@inproceedings{10.1145/3520304.3529024,author={Pil\'{a}t, Martin and Suchop\'{a}rov\'{a}, Gabriela},title={Using Graph Neural Networks as Surrogate Models in Genetic Programming},year={2022},isbn={9781450392686},publisher={Association for Computing Machinery},address={New York, NY, USA},doi={10.1145/3520304.3529024},booktitle={Proceedings of the Genetic and Evolutionary Computation Conference Companion},pages={582–585},numpages={4},keywords={graph neural networks, genetic programming, surrogate models},location={Boston, Massachusetts},series={GECCO '22}}
Graph Embedding for Neural Architecture Search with Input-Output Information
@misc{infonas,title={Graph Embedding for Neural Architecture Search with Input-Output Information},author={Suchopárová, Gabriela and Neruda, Roman},year={2022},url={https://openreview.net/forum?id=HF-NX-6r8lq},}
2020
Genens: An AutoML System for Ensemble Optimization Based on Developmental Genetic Programming
Gabriela Suchopárová, and Roman Neruda
In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020
@inproceedings{genens,author={Suchopárová, Gabriela and Neruda, Roman},booktitle={2020 IEEE Symposium Series on Computational Intelligence (SSCI)},title={Genens: An AutoML System for Ensemble Optimization Based on Developmental Genetic Programming},year={2020},pages={631-638},doi={10.1109/SSCI47803.2020.9308582},url={https://ieeexplore.ieee.org/document/9308582},}